Knowing what your customer might do next is the superpower that every marketer dreams about. But artificial intelligence and machine learning is bringing predictive analytics out of the realm of fantasy and into the world of customer experience management.
In fact, according to the Digital Journal, the use of predictive analytics will spike among enterprises in 2018 in order to identify upcoming consumer trends and behaviors.
Predictive analytics, also known as predictive analysis, is a form of analytics that lets you forecast future events based on historical data. It combines statistical algorithms, AI and machine learning to analyze and learn from past customer actions. Like any prediction, it won’t be 100 percent accurate, but you can imagine the possibilities of being able to know what your customer’s future actions may be — statistically speaking, anyway.
With predictive modelling, you can discover and analyze patterns within your historical data to help uncover future opportunities and risks you’ll want to avoid. It sounds complex, but today’s evolving technologies are enabling businesses of all sizes to employ the use of software and their own data collection methods to forecast the future much easier.
Some examples of current predictive analytics include:
Predictive analytics utilizes models based upon historical data to predict values based upon new data entered into the model. Target variables are also utilized to yield a more accurate probability of an event to occur.
There are two main types of predictive models:
The predictive models above will be created through the three (most widely used) predictive modelling techniques below:
How do all these predictive analytics models come together, you ask? Leading predictive analytics solution MRP Prelytix combines these techniques into two separate packages; one for marketing teams and one for sales teams.
Between them, the two packages help marketers and salespeople identify marketing and sales opportunities, understand their target audiences, orchestrate content to be delivered at the right times and create strategies based on historical data. Moreover, the platform’s built-in analytics system enables users to review the data for themselves to gain deeper insights into their audience’s wants and needs.
One of the most useful applications of predictive analytics is predictive personalization. Customers demand highly personalized brand experiences, right from the first contact to the final transaction. Customers also expect to receive this highly personalized experience each time they make a purchase.
With predictive analytics, we can finally achieve what Steve Jobs had set out to do: “Our job is to figure out what they're going to want before they do.”
You can implement predictive measures like:
It’s easy to assume that predictive analytics and machine learning are the same thing, but there are some key differences.
Machine learning is a field of computer science that gives computers the ability to “learn” things (like the likelihood of an event to happen based on historical data) without being explicitly pre-programmed by humans.
Predictive analytics brings together a number of statistical strategies and algorithms, one of which is machine learning technology. Everything works together to understand the data being mined by the organization and figure out what the customer in question is most likely to do next.
In other words, machine learning is part of the predictive analytics equation, although it has a myriad of uses outside of the predictive analytics space.
Knowledge of customer behavior is one of the most critical pieces of providing your users with a hyper-personalized customer experience. Predictive analytics gives you an overarching view of customer behavior that includes not only their own past actions but the actions they’re most likely to take in the future. No longer is customer behavior limited to their own actions, but instead correlated with data of other users that have exhibited similar patterns.
And thanks to recent advances in machine learning, predictive analytics can be fully automated, leading to reduced cost. As brands begin to further experiment with predictive analytics, it will help to cement a shift towards creating a more relevant customer experience and establish a stronger brand loyalty.
Schedule a call with a dotCMS product specialist to see if dotCMS is right for you.
Request DemoWhereas before, using the customer’s name in an email would suffice, a hyper-personalized campaign uses browsing, purchasing, and realtime behavioral data from multiple channels and touchpoints to tailor content, products, and services to each user.
DownloadMaintaining or achieving a global presence requires effective use of resources, time and money. Single-tenant CMS solutions were once the go-to choices for enterprises to reach out to different market...
What is cloud computing, and what benefits does the cloud bring to brands who are entering into the IoT era?
What’s the difference between a headless CMS and a hybrid CMS, and which one is best suited for an enterprise?